
A pointer logic and certifying compiler ?

CHEN Yiyun, GE Lin??, HUA Baojian, LI Zhaopeng,
LIU Cheng, and WANG Zhifang

Department of Computer Science and Technology,
University of Science and Technology of China,

Hefei 230027, China

Abstract. Proof-Carrying Code brings two big challenges to the re-
search field of programming languages. One is to seek more expressive
logics or type systems to specify or reason about the properties of low-
level or high-level programs. The other is to study the technology of
certifying compilation in which the compiler generates proofs for pro-
grams with annotations. This paper presents our progress in the above
two aspects. A pointer logic was designed for PointerC (a C-like pro-
gramming language) in our research. As an extension of Hoare logic,
our pointer logic expresses the change of pointer information for each
statement in its inference rules to support program verification. Mean-
while, based on the ideas from CAP (Certified Assembly Programming)
and SCAP (Stack-based Certified Assembly Programming), a reasoning
framework was built to verify the properties of object code in a Hoare
style. And a certifying compiler prototype for PointerC was implemented
based on this framework.
The main contribution of this paper is the design of the pointer logic and
the implementation of the certifying compiler prototype. In our certifying
compiler, the source language contains rich pointer types and operations
and also supports dynamic storage allocation and deallocation.

Categories and Subject Descriptors. F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Programs-
Specification Techniques; D.2.4 [Software Engineering]: Software/Program
Verification—safety proofs, formal methods;

Keywords. software safety, Hoare logic, pointer logic, Proof-Carrying
Code, certifying compiler

1 Introduction

Proof-Carrying Code (PCC) [1] brings two big challenges to the research field
of programming languages. One is to explore more expressive logics or type
systems, so that the properties of low-level or high-level programs will be easily

? Received February 12, 2007; accepted ... .
?? Email: gelin@mail.ustc.edu.cn



2 A pointer logic and certifying compiler

specified or reasoned about. The other is the research on certifying compilation,
which explores how the compiler generates proofs for the compiled programs.

For the first challenge, the TAL (Typed Assembly Language) project [2]
and the theory of type refinements [3] are two typical projects in type-based
approaches, while PCC [1] and FPCC (Foundational Proof-Carrying Code) [4]
are typical projects on logic-based techniques. Type-based and logic-based tech-
niques are complementary to each other, and in recent years, some researchers
have tried to combine those techniques. Shao et al. adopted a syntactic approach
to FPCC, and proposed a simple and flexible framework to support Hoare-style
reasoning for assembly code certification in their projects CAP (Certified Assem-
bly Programming) [5] and SCAP (Stack-based CAP) [6] etc. The ATS (Applied
Type System) project [7] proposed by Xi et al. extends the type system with a
notion of program states, so that invariants on states could be captured in state-
ful programming. By encoding Hoare logic in its type system, ATS can support
Hoare-logic-like reasoning via the type system.

For the second challenge, Necula implemented a certifying compiler [8] called
Touchstone. It contains a traditional compiler for a small but type-safe subset
of C and a certifier that automatically produces a proof of type safety for each
assembly program produced by the compiler. Later, Colby et al. implemented
Special J [9], a certifying compiler for a large subset of Java. It compiles Java
byte code into target code for Intel’s IA32 architecture.

We have adopted PCC technology and certifying compilation to a program-
ming language with dynamic storage allocation and deallocation—PointerC1 (a
safe C-like language defined in our work). And we have also implemented a
certifying compiler prototype for PointerC. Pointer operations in PointerC are
restricted: pointer variables can only be used in assignment, equality compari-
son, dereference or as the parameters of functions; the address-of operator (&)
and pointer arithmetic are forbidden. We adopt an approach combining both
type-based and logic-based techniques to reason about program properties. To
make the type system simple and guarantee the safety of the language at the
same time, side conditions are introduced into the typing rules to express the
constraints on values. In order to check these side conditions statically, we have
designed a pointer logic for PointerC. The pointer logic is an extension of Hoare
logic and essentially is a pointer analysis tool. It collects pointer information in
a forward manner. Such information can be used to prove that the program sat-
isfies the side conditions in the typing rules and then to support value-sensitive
static checking.

The pointer logic is the main contribution of this paper. As extensions of
Hoare logic, separation logic [10] and our pointer logic are both to reason about
properties of pointer programs for shared mutable data structures. But there is a
great difference between them. Our pointer logic concerns pointer aliasing. In the
pointer logic, different access paths are assumed to be bound to different storage
locations, unless it can be proved that they are bound to the same location

1 Hua B J and Ge L. The definition of PointerC programming language.
http://ssg.ustcsz.edu.cn/lss/doc/index.html. (in Chinese)



Front. Comput. Sci. China (2007), Research Article 3

(those bound to the same location are aliases). Therefore, equality information of
effective pointers is needed to deduce the access paths that are bound to the same
location. And this is also the reason why the pointer logic need not introduce new
connectives. Separation logic can only handle programming languages in which
all access paths are simple, so it only concerns where a pointer points to. In
separation logic, pointers are assumed to potentially point to the same location,
unless they are explicitly expressed to point to different locations. Therefore, it
needs to introduce new logical connectives such as separating conjunction “*”etc.

While designing inference rules for the pointer logic, we extends Hoare logic in
the viewpoint of pointer analysis. The inference rules are designed to be suitable
for the collection of pointer information in a forward way. Such information can
be used to check the legality and other properties of a program. Separation logic
extends Hoare logic in the viewpoint of program verification, and its inference
rules are designed to fit backward reasoning.

In addition, in source programs, it is common to use expressions with the
form id1->id2->id3->...->idn, such as s->next->next, but this kind of ex-
pressions could not be used directly in the assertions of separation logic because
they involve several separated portions of addressable storage. This makes it
difficult for separation logic assertions to be expressed directly using program
expressions. In assertions of separation logic, accessibility is explicitly repre-
sented by “ 7→” . This makes the inference rules simple and clear, but when
several access paths are bound to the same location, which is common in source
programs, the explicit representation will increase the steps of deduction. For
example, considering the program fragment:

p = malloc(...); *p = a;
{{{*p == a}}}
q = p; *q = b;
{{{*p == b}}}

where expressions in notation {{{ }}} are assertions. When using separation logic,
the deduction from assertion *p == a to assertion *p == b has more steps than
that using the pointer logic.

Another contribution of this paper is the implementation of a certifying com-
piler prototype. Our certifying compiler supports a source language (PointerC)
equipped with both a type system and a logic system. And compared with
the source languages compiled in Touchstone and Special J, PointerC has more
pointer types and operations, and provides dynamic storage allocation and deal-
location as well. These features make PointerC suitable for writing system-level
programs.

In this paper, we present the pointer logic designed for PointerC and the
certifying compiler prototype that has been implemented. The rest of the paper
is organized as follows. In section 2, we explain the design of the pointer logic;
section 3 describes the assembly-level pointer logic system added in an assembly
code certification framework; section 4 discusses the design of the certifying
compiler prototype; section 5 gives an example; section 7 compares our work
with related work and section 8 concludes.



4 A pointer logic and certifying compiler

2 The pointer logic

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they
compute. It is mainly used to eliminate context-sensitive errors in programs. A
traditional type system is not enough when the legality of a phrase depends
not only on the context but also on some expression values in the phrase. One
solution is to use dependent types [7]. Another solution is not to deem the
constraints on values as parts of the type system, and the constraints don’t
appear in the typing rules. The former makes the type system complicated and
the latter makes it an unsound type system.

We try to investigate a trade-off between these two solutions in the design
of PointerC. To make the type system simple and guarantee the safety of the
language at the same time, side conditions are introduced into the typing rules to
express the constraints on values. For example, in the following two typing rules,
side conditions contain the constraints on subscript expressions and pointers.

Γ `e : int Γ `a : array(10, bool)

Γ `a[e] : bool
0 ≤ e ∧ e ≤ 9

Γ `p : ptr(struct(. . . , x:int, . . . ))
Γ `p->x : int

p ∈ effective ptrs

These side conditions must be checked. And to check these side conditions
statically, we have designed a pointer logic for PointerC. The design of the pointer
logic is inspired by the following facts and speculations:

1. At a program point, if we know whether a pointer is an effective pointer
(a pointer which points to an object), a null pointer or a dangling pointer
and the equality relation between all the effective pointers, we can deduce
whether a pointer operation is safe or not. And we can also capture the
change of the pointer information after this operation.

2. A logic system may not able to prove the safety of all programs. But it is
still feasible if it can prove the safety of most programs.

3. The pointer information collected by Hoare-style reasoning can be used to
reason about program properties. It amounts to combining program analysis
with program verification and this combination has a brilliant future.

To present the pointer logic, we make clear some pointer-related terms and
notations first, and then explain some elementary operations used in the pointer
logic. After that, we introduce the inference rules in our pointer logic.

2.1 Conventions, terminologies and notations

Dynamic variables can only be accessed through declared pointer variables. For
example, s->data, s->next->pre, *s and *s[5] etc. Such expressions are called
symbolic access paths of variables, access paths for short. Note that s->next is



Front. Comput. Sci. China (2007), Research Article 5

not an access path if s is a null or a dangling pointer. For convenience, duplicated
parts in an access path are abbreviated in the pointer logic. For example, access
path s->next->next->. . . ->next (“->next” is repeated i times) is abbreviated
to s(->next)i, and if i=0, s(->next)i just represents s. Pointer variables (in-
cluding dynamic pointer variables) are called pointers for short, and they are
classified into effective pointers, null pointers and dangling pointers, and the
latter two are also called ineffective pointers. In the rest of this paper, two dif-
ferent concepts—equality and aliasing of pointers—are often mentioned. When
two pointers are aliases, it means that their l-values are equal; and when they
are equal, it means that their r-values are equal. Because of the limitations on
pointer operations and the call-by-value calling convention in PointerC, a de-
clared variable can not be aliased by other variables (in this paper, aliasing of
array elements is not considered). Only if two pointers are equal, the access paths,
which are formed by appending a common suffix to the two pointers, are aliases.
For example, in Fig. 1, u and v are equal pointers, but not aliases. u->next and
v->next are aliases. Obviously, if we have the information of pointer equality,
we can deduce whether two access paths are aliases. In the rest of the paper, we
use metavariables p, q and r to represent access paths.

�� ��

��� �

�� ��

��� �
��

� ��

���

�

�

Fig. 1. Pointers in Π, N and D

In the pointer logic, we use “N” to denote null pointer set, “D” for dan-
gling pointer set and “Π” for effective pointer set at any program point. Π is
divided into equivalent sets according to the equality information of effective
pointers. Pointers in one equivalent set are equal but not aliases. At any point
of a program, all pointers (or their aliases) can be found in Π, N or D. If a
pointer has several aliases at this point, only one of them is in Π, N or D.
For example, in Fig. 1, Π = {{u, v}, {s, u->next}}, N = {t, s->next},
D = {w}. (In this figure, the cross in w represents meaningless location, and
“/\” represents null.) Note that the number of access paths in Π is just the



6 A pointer logic and certifying compiler

number of arrows in the figure, and the arrows which point to the same object
correspond to the pointers in the same equivalent set. Although Π, N and D
are sets, they are essentially logical expressions connected by conjunction “∧”,
and can appear in the precondition or postcondition of a Hoare triple. “Ψ” is
a short notation for Π ∧ N ∧ D. For example, in Fig. 1, the equivalent set
{u, v} is actually a logical expression, and it means that u and v are equal
but unequal to any of other pointers; all the pointer sets can be expressed as
{u, v}∧{s,u->next}∧{t, s->next}N ∧{w}D, where the sets without subscript
represent equivalent pointer sets, and the sets with subscript N and D repre-
sent null pointer set and dangling pointer set respectively. The null pointer set
{t, s->next}N can also be written as {t}N ∧{s->next}N , and the same for the
dangling pointer set D. If, at a program point, Π is an empty set, the assertion
at this point contains no equivalent set; if {. . . }N or {. . . }D does not appear in
the assertion, it means that null pointer set or dangling pointer set is empty.

2.2 Elementary operations

Access paths are a special kind of strings that satisfies certain syntactical re-
quirements, and in this paper, all strings represent the strings or substrings that
form access paths. If an access path p is a prefix of q (but they are not the same),
the value of the predicate prefix(p, q) is true, otherwise is false. The symbol
“||” represents the concatenation operation of two strings or a string set and a
single string. If the operands are a string set S and a single string s, it makes
every element in the set S concatenated by the string s:

S||s , S ′ where (s′||s) ∈ S ′ iff s′ ∈ S.

If the values of two access paths s1||s2 and s1 are equal (note that neither of s1
and s2 are empty strings), then the access path s2 is called a cycle in s1||s2||s3
(s3 is also a non-empty string). The symbol “≡” is used to represent that two
strings are syntactically identical.

Next, we define some functions operated on access paths. The functions have
Ψ or Π as their parameters. But such parameters are all omitted for simplicity.

1) Function closure(p) calculates alias set for the access path p, and the aliases
in this set must have the simplest form. This set is called the closure of p, and
it contains and only contains all acyclic aliases of p, including p itself.

closure(p) ,
if length(p) = 1 then {p}
else let (s1|| . . . ||sn−1||sn) ≡ p

in compression(expansion(closure(s1|| . . . ||sn−1))||sn),

where function length(p) calculates the length of the access path p. The length
represents the number of meaningful units in p, rather than the number of char-
acters in p. For example, the length of the access path t->next->data is 3.

Function expansion(S) expands the alias set S with the access paths whose
values are equal to the elements in S, and its formal definition is:



Front. Comput. Sci. China (2007), Research Article 7

expansion(S) ,
if ∃S ′ : (Π ∪ {N} ∪ {D}).(S ∩ S ′!=∅)
then let {p1, . . . , pn} = S ′ − S

where S ′ ∈ (Π ∪ {N} ∪ {D}) ∧ S ∩ S ′!=∅
in S ∪ closure(p1) ∪ . . . ∪ closure(pn)

else ∅.
Function compression(S) deletes all the cyclic access paths from the alias set

S, and its formal definition is:

compression(S) , S − S ′
where (S ′ ⊂ S) ∧ ((s1||s2||s3) ∈ S ′

iff (s1!=ε) ∧ (s2!=ε) ∧ (s3!=ε) ∧ ((s1||s3) ∈ S) ∧ (s1||s2 = s1))

For brevity, the above function closure is a definition, not a computing al-
gorithm. For example, it does not consider the termination of the calculation
concerning cyclic data structures, such as doubly-linked cyclic list. But, in the
implementation of closure, it is easy to solve the problem of termination. And
given the closure function, it is also simple to delete cycles from the access paths.
So for convenience, it is assumed that all access paths in programs have the sim-
plest form.

2) Function alias(p, q) gets an alias of p from the closure of access path p. The
alias it gets must not use any alias of effective pointer q as a prefix. If there is
no such an alias, it returns p.

alias(p, q) ,
let S = {p′ : closure(p) | ∀q′ : closure(q).¬prefix(q′,p′)}
in if S == ∅ then p else p′ where p′ ∈ S

3) Function equals(p) gets the equivalent set of p. If one of the aliases of p appears
in an equivalent set, the function returns the set, or else it returns empty set.

equals(p) ,
if ∃S : Π.(S ∩ closure(p)!=∅)
then S where S ∈ Π ∧ S ∩ closure(p)!=∅ else ∅

Next, we introduce the operations and predicates directly used in inference rules.
These operations show how to get the Ψ in a postcondition based on the Ψ in
the corresponding precondition.

4) Suppose S is an equivalent set in Π, and p is an effective pointer. For each
pointer q in S which uses one of p’s aliases as its prefix, S/p finds an alias of q
using alias(q,p), substitutes the alias for q in S, and then deletes p’s aliases and
any other pointers which use p’s aliases as their prefixes from S.

S/p ,
let S ′ = {q : S | ∀p′ : closure(p).¬prefix(p′, q)}∪

{q′ | ∃q : S.∃p′ : closure(p).(prefix(p′, q) ∧ q′ ≡ alias(q,p))}
in {q : S ′ | ¬(q ∈ closure(p)) ∧ ∀p′ : closure(p).¬prefix(p′, q)}



8 A pointer logic and certifying compiler

We use Π/p to denote performing S/p for each S in Π.
When an effective pointer q is assigned a value which is not equal to q, Π/q

should be performed. For example, in Fig. 2 where Π = {{u, v->pre}, {v, u->next}},
Π/v = {{u, u->next->pre}, {u->next}}. ({u->next} means that u->next is
an effective pointer and is not equal to any of other pointers.)

�� ��

� ��

��� �

�� ��

� ��

��� �

� �

Fig. 2. Pointers in a doubly-linked cyclic list

5) N\p or D\p replaces the pointers in N or D which use p’s aliases as their
prefixes with their other aliases. N/p or D/p deletes the aliases of p from N or
D.

N\p ,
{q : N | ∀p′ : closure(p).¬prefix(p′, q)}∪
{q′ | ∃q : N .∃p′ : closure(p).(prefix(p′, q) ∧ q′ ≡ alias(q,p))}

N/p , {q : N | ¬(q ∈ closure(p))}

N/{p1 . . .pn} , ((N/p1) . . . /pn)

The formal definitions of D\p and D/p are similar.

6) We use the set operator ∪ to represent the union of two pointer sets. Usually,
this operator is used to add a pointer to a pointer set. And we also use set
operators ∪ and − and their combinations to represent the addition, deletion
and substitution of equivalent sets.

7) Function no leak(p) tests the result of S/p for S containing p (just testing, not
really deleting). This testing is to avoid memory leaks caused by an assignment
to p.

no leak(p) , if equals(p)/p!=∅ then true else false

2.3 Axioms and inference rules

In this section, we define axioms and inference rules in our pointer logic. In the
following rules, p and q are access paths; p.eq is p’s equivalent set, and

p.eq = equals(p).



Front. Comput. Sci. China (2007), Research Article 9

In each of the following rules, the premises of the rule should be computed based
on the Ψ before the statement.

1) Pointer assignment: p=q.
Here different inference rules are used in different cases.

a) Both p and q are effective pointers or null pointers, and they are equal (in-
cluding the case where p is a null pointer and q is constant NULL).

(p.eq!=∅ ∧ p==q) ∨ (p==NULL ∧ q==NULL)
{Π ∧N ∧ D} p=q {Π ∧N ∧ D} (rule 1)

b) Both p and q are effective pointers, and they are not equal.

(p.eq!=∅ ∧ q.eq!=∅ ∧ p!=q) ∧ no leak(p)
{Π ∧N ∧ D} p=q {((Π − {q.eq})/p ∪ {q.eq/p ∪ {p}}) ∧N\p ∧ D\p}

(rule 2)

c) p is a null pointer and q is an effective pointer.

p==NULL ∧ q.eq!=∅
{Π ∧N ∧ D} p=q {((Π − {q.eq}) ∪ {q.eq ∪ {p}}) ∧N/p ∧ D} (rule 3)

d) p is a dangling pointer and q is an effective pointer.
The rule for this case is similar to (RULE 3).

e) p is an effective pointer and q equals NULL (including the case where q is
constant NULL).

p.eq!=∅ ∧ q==NULL ∧ no leak(p)
{Π ∧N ∧ D} p=q {Π/p ∧ (N\p ∪ {p}) ∧ D\p} (rule 4)

f) p is a dangling pointer and q equals NULL (including the case where q is
constant NULL).

p : D ∧ q==NULL

{Π ∧N ∧ D} p=q {Π ∧ (N ∪ {p}) ∧ D/p} (rule 5)

where p : D represents that an alias of p is in D
2) The assignment axiom for non-pointer-type data is as follows. It is an exten-
sion of Hoare logic assignment axiom, and aliasing has been considered in this
axiom. The axiom does not interfere with Ψ .

{(Ψ ∧Q)[y1 ← x] . . . [yn ← x][x ← e]} x=e {Ψ ∧Q} (axiom 6-1)

where y1, . . . , yn represent all the members of closure(x).



10 A pointer logic and certifying compiler

For assignment of pointer-type data, if besides Ψ , there is another Q which
contains pointers (including pointers as prefixes), then another assignment axiom
may also be useful:

{Ψ ∧Q} p=q {Ψ ′ ∧Q[r ← p]} (axiom 6-2)

where r is a member of closure(p) (not p itself), and Ψ ′ can be derived from Ψ
using RULE 1 to 5. In another word, when assigning a pointer to p, the alias
substitution of p should also occur in assertions besides Ψ .

Assertion Q in the above two axioms contains no pointer sets. And if there
are any access paths in Q, they must be valid access paths according to current
Π. All Qs in the following rules have this restriction.

3) Composition, if-then-else, while and Consequence rules are the same as the
counterparts in Hoare logic. But note that Ψ should not be strengthened or
weakened in Consequence rule. For example, {p, q, r} does not imply {p, q}, and
{p, q} ∧ {r} should not be weakened to {p, q}.
4) Ψ -modification axioms.

Ψ ∧ ¬(p : Ψ) ∧ (p!=NULL) ⊃ (Π ∪ {{p}}) ∧N ∧ D (axiom 7)

Ψ ∧ ¬(p : Ψ) ∧ (p==NULL) ⊃ Π ∧ (N ∪ {p}) ∧ D (axiom 8)

where p : Ψ indicates that an alias of p is in Ψ , and “⊃” denotes implication.
Some well-formed data structures , such as List and Binary Tree, contain no

dangling pointer. So a pointer is either an effective pointer or a null pointer in
such data structures. In a program, the effectiveness of such a pointer is usually
determined through null-pointer test. Therefore, such a pointer can be added into
Π or N according to the different test results. These two axioms just modify Π
or N according to null-pointer test.

5) Allocation statement: p=malloc(t), where t is the type of the allocated storage.
If t is a structure type, r1, . . . , rn represent pointer-type fields in t.
a) p is a null pointer.

p==NULL

{Π ∧N ∧ D} p=malloc(t) {(Π ∪ {{p}}) ∧N/p ∧ (D ∪ {p->r1, . . . ,p->rn})}
(rule 9)

b) p is a dangling pointer. The inference rule for this case is similar to (RULE 9).
c) p is an effective pointer. In this case, the allocation statement can be regarded
as a statement sequence p=NULL; p=malloc(t);. (RULE 4) and (RULE 9) can
be used to handle this case.

6) Deallocation statement: free(p).



Front. Comput. Sci. China (2007), Research Article 11

To simplify the following rule, we suppose the object pointed by p does not
contain effective pointers. If the object pointed by p contains effective point-
ers, such as p->r1,. . . ,p->rn, the deallocation statement can be regarded as
p->r1=NULL; ...; p->rn=NULL; free(p);, and then handled by several rules.

p.eq!=∅
{Π ∧N ∧ D} free(p) {(Π − {p.eq}) ∧N/{p->r1, . . . ,p->rn} ∧ (D ∪ p.eq)}

(rule 10)

7) Function
Functions handled by our inference rules have the following restrictions:

– Pointer-type formal parameters must be read-only, and should not be used
as the actual parameter of free.

– If the formal parameter is an effective pointer, the equivalent set of the cor-
responding actual parameter should only contain the actual parameter itself.
This restriction is helpful for local reasoning. If a call statement does not
obey this restriction, it can be easily transformed into a statement sequence
which does obey the restriction.

– In function call ret=f(. . . ), if the return type of the function f is pointer type,
ret should not be an effective pointer at the call point. A call statement can
be easily transformed to satisfy the restriction if necessary.

In the following rules, the function has only one formal parameter, and rules
for multiple-parameters cases are similar. arg represents the formal parameter,
and act represents the corresponding actual parameter. To simplify the inference
rule for return, we assume that in the function there is a local variable res whose
name is different from any declared local variables, and the statement return e;
is always transformed to the statement sequence res = e; return res; when
being reasoned about.

We only show the inference rule for function call ret=f(act), where both the
parameter type and the return type of function f are pointer types. The rules for
other cases are simpler. Variables v1, . . . , vk denote all the local variables with
pointer types.
a) Actual parameter act is an effective pointer, and ret is a null pointer. (Qarg is
the assertion which only concerns arg, and f body is the body of the function f.)

{{arg} ∧ {v1, . . . , vk, res}D ∧Qarg} f body {Ψ ∧Q}
{({arg} ∧ {ret}N ∧Qarg)[arg ← act]} ret=f(act) {(Ψ ∧Q)[arg ← act][res ← ret]}

(rule 11)

If act is an ineffective pointer, the inference rule is similar to (RULE 11).
b) return statement.

Since local variables of a function can not be accessed after the function has
returned, pointer information about them should be deleted from Ψ after the



12 A pointer logic and certifying compiler

function has returned, and memory leaks should also be checked. The following
two inference rules are used for this purpose. (Qres is the assertion which only
concerns res.)

{Ψ0} v1=NULL {Ψ1} . . . {Ψk−1} vk=NULL {Πk ∧Nk ∧ Dk}
{Ψ0} return res {Πk ∧ (Nk − {v1, . . . , vk}) ∧ Dk}

(rule 12)

{Ψ} return res {Ψ ′}
{Ψ ∧Qres} return res {Ψ ′ ∧Qres}

(rule 13)

You can refer to section 5 for an example of the usage of these rules.

3 Pointer logic at assembly level

At assembly level, we have defined a target machine to simulate the behavior
of the actual machine. The reasoning of assembly code is based on the target
machine. A framework for assembly code certification, called Function-based
Certified Assembly Programming (FCAP)2, has been defined to reason about
primary stack safety and integer-related properties of assembly programs. This
framework is much similar to CAP and SCAP [5, 6]. To reason about pointer-
related properties at assembly level, another pointer logic system, which is similar
to that at source level, has also been defined in FCAP. In this section, we present
the assembly-level pointer logic system and we only present its distinctions from
that at source level.

If the operands of an instruction have pointer types, the instruction is a
pointer operation. In order to know whether an instruction is a pointer oper-
ation, we have designed a simple type system at assembly level. We defined a
typing environment based on the target machine. For each structure type, the
typing environment indicates the size of the structure (the structure size is used
to avoid out-of-bound accesses to dynamically allocated storage), and the offsets
of pointer fields in this structure. For each stack frame (i.e., function), the typ-
ing environment also indicates the offsets which contain pointers (i.e., the local
variables or parameters with pointer types). Unlike at source level, the types of
some objects in the assembly-level typing environment are mutable during func-
tion execution. For example, registers and the top of stack can store temporary
values with different types. We can determine whether the current instruction is
a pointer operation by referring the typing environment, and we can also modify
the mutable parts of the typing environment. See the article in our website3 for
the design details of the type system. Besides type checking, the information in
the typing environment can also be used for computing Π, N and D. For exam-
ple, information of structure types is used to adjust D when a dynamic storage
2 Li Z P. A framework of function-based certified assembly programming.

http://ssg.ustcsz.edu.cn/lss/doc/index.html.
3 Li Z P. Coq implementation of the soundness proof of FCAP.

http://ssg.ustcsz.edu.cn/lss/software/index.html.



Front. Comput. Sci. China (2007), Research Article 13

is requested; type information of local variables is used to adjust D at the entry
point of a function.

The type system can only determine whether an instruction is a pointer
operation, and the legality of the pointer operation is determined by the pointer
logic system at assembly level. The relationship and main differences between
the pointer logic systems at assembly level and source level are as follows:

1. The type system at assembly level is not independent, and all of its typing
rules are merged into the corresponding pointer logic inference rules.
Since the type system at assembly level only concerns typing of pointers
and the inference rules in assembly-level pointer logic system also concern
pointers, they can be combined together. See (RULE 14).

2. The inference rules for assignments in the source-level pointer logic can be
easily modified to be the inference rules for the corresponding assembly in-
structions.

3. The assembly level pointer logic system has some special assignment rules.
4. The inference rules for function call or return statement in the source-level

pointer logic correspond to the combination of the rules of several instruc-
tions at assembly level.

We will explain the last 3 points one by one.
Besides call instructions, including malloc and free, the instructions which

may change the pointer information include movl, pushl etc. (Here we call
them assignment instructions.) The inference rules for these instructions in the
assembly-level pointer logic are almost the same as the corresponding assignment
rules at source level, except that variables are replaced with memory addresses,
registers, and register indirect addresses etc. Since there is no complex access
path in assembly programs, aliasing calculation at assembly level is much simpler
than that at source level.

For example, suppose p and q are effective pointers and they are not equal,
an inference rule in the assembly-level pointer logic system is:

pointer assign(p, q) ∧ (p.eq!=∅ ∧ q.eq!=∅ ∧ p!=q) ∧ no leak(p)
{Π ∧N ∧ D} movl q,p {((Π − {q.eq})/p ∪ {q.eq/p ∪ {p}}) ∧N\p ∧ D\p}

(rule 14)

This rule is almost the same as the corresponding source-level rule, except that
it has an additional premise for determining whether the instruction is a pointer
operation (pointer assign(p, q)).

Registers can store both integers and pointers, so there may be instruc-
tions whose operands have no explicit types. For example, the instruction movl
-8(%ebp), %eax, where -8(%ebp) has pointer type, and eax has no explicit
type. The same problem arises in instruction pushl. And furthermore, after the
execution of pushl, the access paths in Ψ , which begin with esp, will need adjust-
ment. Such instructions must have special rules. Luckily, it is straightforward to
design rules for them according to the assignment rules in the source-level pointer



14 A pointer logic and certifying compiler

logic. In source programs, such cases do not exist because variable types are not
mutable.

A function call statement or a return statement at source level is compiled
into several instructions at assembly level. The change of pointer information
caused by the call or return statement at source level corresponds to the change
caused by those instructions at assembly level. So the rule for function call or
return statement at source level corresponds to the composition of several rules
at assembly level. For example, a function call statement “a = f(5);” will be
compiled into the following instructions:

pushl $5 –push the parameter
call f –push return address and transfer the control to f
movl %eax, a –store the return value to a

Rules for these three instructions must be composed to achieve the influence of
the function call rule at source level.

The soundness of FCAP (including the assembly-level pointer logic system
in it) is similar to that of SCAP [6]. Its aim is to guarantee that the runtime
behavior of a program will satisfy its specifications when it can pass the static
proof-checking. To prove the soundness theorem, we need to prove three lemmas
first. Two of them are “Progress” and “Preservation”, which are the same as
those in SCAP. The other is to confirm that the assembly-level pointer logic
system is sound with respect to the operational semantics of the target machine.

We have finished proving the soundness theorem formally using Coq4. See
the article in our website5 for the soundness theorem and its proof.

4 Certifying compiler

In order to check program safety statically, side conditions in the typing rules
must be provable at the corresponding program points. This is achieved through
the following steps:

1. Programmers annotate each function with a pair of pre- and postconditions
and each while loop with a loop invariant. These annotations belong to the
specifications of the source program.

2. A verification condition generator (VCGen) is embedded into the front end
of the compiler. It can convert the task of proving a program satisfying its
specifications into the task of proving a set of VCs. From the annotations
mentioned in 1 and the side conditions in the typing rules, the VCGen gen-
erates a set of VCs using the pointer logic rules. And these VCs should be
proved in order to guarantee program safety.

4 Coq Development Team. The Coq proof assistant reference manual. Coq release v8.0,
October 2005.

5 Li Z P. Coq implementation of the soundness proof of FCAP.
http://ssg.ustcsz.edu.cn/lss/software/index.html.



Front. Comput. Sci. China (2007), Research Article 15

3. A simple theorem prover, which produces corresponding proofs for pointer-
related VCs, is embedded into the compiler as well. Integer-related VCs are
proved interactively in Coq by the programmers. The VCs and their proofs
show that the source program satisfies its specifications.

In this section, we present our work on the certifying compiler. We focus on the
modules for reasoning about pointer-related properties, including verification
condition generation, code and assertion generation, and proof generation.

4.1 Verification condition generation

At first, we discuss how to generate VCs for functions with pointer-type data.
Figure 3 shows the structure of a function chosen from PointerC syntax, some
irrelevant details are omitted.

FunDcl → id(arg){Body}
Body → VarDecList StmtList

StmtList → Stmt StmtList | ε
Stmt → lval = Exp

| if (Bexp) {StmtList} else {StmtList}
| while (Bexp) {StmtList}
| lval = alloc(Type)
| free(Exp)
| lval = id(Exp)
| return res

Fig. 3. Structure of function

The pointer logic is fit for collecting pointer information forward, so the VC
generation is based on the strongest postcondition calculus, which is also in a
forward manner. Figure 4 shows the main rules for the strongest postcondition
calculus (function sp) in the pointer logic and the procedure of VC generation
(for data with pointer type). These rules are recursively defined according to the
syntactic structures in a function. In Fig. 4, the first parameter of function sp
is a syntactic structure, and the second one is the precondition of the syntactic
structure. The VC generation described in this paper has the following important
characteristics:

1. Since the precondition Ψ and the postcondition Ψ ′ of a function are given,
the VC sp(StmtList, Ψ) ⊃ Ψ ′ is generated at the exit of the function (note
that StmtList forms the statement list of the function).

2. One difficulty of strongest postcondition calculus is the need to find a fixpoint
for a recursive equation in a loop statement. The solutions to such equations
are usually undecidable, and it is also the primary reason why the correctness



16 A pointer logic and certifying compiler

1. Function definition
{Ψ} id(arg){Body} {Ψ ′}, that is {Ψ} StmtList {Ψ ′}, where the StmtList is the
StmtList in the Body production.

2. Statement List
– sp(Stmt StmtList, Ψ) = sp(StmtList, sp(Stmt, Ψ))
– sp(ε, Ψ) = Ψ . If ε forms the StmtList of a function, then VC: Ψ ⊃ Ψ ′ (see 1

for Ψ ′) will be generated.
3. Statement

– assignment: sp(lval = Exp, Ψ) = Ψ ′, Ψ ′ can be calculated using Ψ according
to the assignment rules in the pointer logic.

– condition: sp(if (Bexp) {StmtList1} else {StmtList2}, Ψ) =
sp(StmtList1, Bexp ∧ Ψ) ∨ sp(StmtList2, ¬Bexp ∧ Ψ)

– loop: sp(while (Bexp) {StmtList}, Ψ) = ¬Bexp∧I, where I is the loop invariant
for pointer-type data. VC1: Ψ ⊃ I and VC2: sp(StmtList, Bexp∧ I) ⊃ I should
be generated at the entry point and the exit of StmtList respectively.

– allocation: sp(lval = alloc(Type), Ψ) = Ψ ′, Ψ ′ can be calculated using Ψ
according to the allocation rules in the pointer logic.

– deallocation: sp(free(Exp), Ψ) = Ψ ′, Ψ ′ can be calculated using Ψ according
to the deallocation rule in the pointer logic.

– function call: If the pre- and postconditions of function id are
{arg} ∧ {lval}N ∧Qarg and Ψ ′ ∧Q respectively, then sp(lval = id(Exp), Ψ) =
(Ψ ′ ∧ Q)[arg ← Exp][res ← lval], where Q and Qarg are assertions that have
nothing to do with pointers, arg is the formal parameter, and res is the return
value (see Fig. 3). VC: Ψ ⊃ ({arg} ∧ {lval}N ∧ Qarg)[arg ← Exp] should be
generated at the entry point of this statement.

– return: sp(return res, Ψ) = Ψ

Fig. 4. The Strongest postcondition calculus and the VC generation for pointer-type
data

of a program can not be proved automatically. The loop invariant provided
by programmers is used to avoid the difficulty. However, in order to prove
the validity of the loop invariant, two VCs must be generated at the entry
point and the exit of the loop respectively.

3. The pre- and postconditions of each function have also deeply simplified
the computation of sp for function call statement. Briefly speaking, the Ψ
before the call statement should imply the precondition of the callee, and
the callee’s postcondition should be used as the strongest postcondition after
the call statement. Certainly, we also need to consider the substitution of
actual parameters for formal parameters as well as the substitution of the
variable lval for the variable res (see function call in Fig. 4).

4. One remarkable distinction of our pointer logic from Hoare logic is that the
pointer logic has no uniform assignment axiom. Instead, different assignment
rules are used in different cases in our pointer logic. Since the pointer analysis
is precise, it is easy to determine which rule to use in a certain case and it is
clear how to compute Ψ ′ using Ψ in the sp rule for assignment. Such details



Front. Comput. Sci. China (2007), Research Article 17

are not presented in Fig. 4, and interested readers could refer to another
article6.

5. At the entry point of a function, the initial values of the pointer-type formal
parameters and local variables should be checked in the pointer logic. And
at the exit of the function, the effectiveness of them should also be checked
to avoid memory leaks. But for the space limit, the VC generation in Fig. 4
does not reflect this.

For integer-type data, we adopted a complemented approach of Hoare logic—
weakest precondition calculus (wp) [11]—to generate assertions or VCs at each
program point. Note that the side condition in a typing rule should be combined
with the assertion which is at the entry point of the corresponding statement.
For pointer-type data, such a problem does not exist. Because a pointer-related
side condition is consistent with the premise of the corresponding inference rule
in the pointer logic, and should have been checked before the rule is chosen.

4.2 Code and assertion generation

In our FCAP framework, specifications and the proof of code satisfying the
specifications are carried in the assembly code. The assembly code is divided into
basic blocks. Basic block, which is a concept in code optimization and generation,
is a sequence of instructions; and in our design, the instruction sequence is ended
with a control transfer instruction such as jmp or call. Each basic block B has
its precondition P, postcondition Q, and the proof or proof hint of Hoare triple
{P} B {Q}. The proof can be checked by a proof checker. According to the
principle that the postcondition of a basic block should imply the precondition
of the succeeding basic block in the control flow, Q can be omitted since we can
just take the precondition of the succeeding basic block as Q.

In order to ensure that each basic block has pertinent pre- and postcon-
ditions, assertions should be generated at proper program points during code
generation. Using the calculi in section 4.1, we can get and insert a proper asser-
tion at any program point, and we can also get proper VCs. If we only consider
pointer-related assertions, all the work can be done via a one-pass inspection
of source programs during compilation. But when considering the generation of
integer-related assertions and VCs, it is difficult to do all the work about point-
ers and integers in one pass, because they are based on the calculi in different
directions. The compiler can do type checking, pointer-related assertion gener-
ation, VC generation, integer side condition annotation and intermediate code
generation in the first pass and generate integer-related assertions and VCs using
the annotation of integer side conditions in the second pass.

When generating assembly code, the pre- and postconditions of basic blocks
should be adjusted as follows:

6 Chen Y Y, Hua B J, Ge L, et al. A pointer logic for safety verification of pointer
programs. http://ssg.ustcsz.edu.cn/lss/papers/index.html. (in Chinese)



18 A pointer logic and certifying compiler

1. At source or intermediate level, variables are represented by names in asser-
tions; but at assembly level, they are represented by memory addresses or
registers. Also, an assertion at assembly level is parameterized by a machine
state. So, assertions also need to be translated during code generation. It is
lucky that this kind of translation is straightforward.

2. Registers are used to store temporary values in the assembly code, so the
contents of some registers may equal the values of some variables at the
exit of one basic block. Usually, code generation algorithm can collect such
information. And this information makes it easy to adjust Ψs at the entry
point and the exit of one basic block.

3. At the entry point and the exit of each basic block, there are some relatively
steady assertions such as “the return address saved in current stack frame
will not be overwritten during the execution of the basic block”. All of these
assertions depend on the target machine. Since they are almost the same for
each basic block, there is no difficulty in generating them.

4.3 Proof generation for basic blocks

In the generated assembly code, each basic block B has a proof or proof hint for
{P} B {Q}. The proof or proof hint is generated by the compiler. Besides the
proofs or hints for basic blocks, the assembly code also carries assembly-level
VCs and their proofs. These VCs and proofs can be achieved by translating the
source-level VCs in Fig. 4 and their proofs respectively. And they are usually
used in proving that a basic block’s postcondition should imply its successor’s
precondition.

The proof of a basic block satisfying its pre- and postconditions is produced
as follows: first, assertions between the instructions in the basic block are de-
duced in a forward manner. These assertions can be generated from the pre-
and postconditions of the basic block according to the inference rules of the
assembly-level pointer logic system. In each step of the deduction, the evidence
on which the instruction is determined as a pointer operation and the inference
rule used in the deduction are recorded and output together with the basic block.
We will explain these using an example in the next section.

5 Example: deleting a node from BST

In this section, we take the function

struct node * DeleteNode(struct node *p)

as an example to present the application of the pointer logic. We will show how to
prove safety of a pointer program, how to translate pointer-related assertions and
how to prove that the compiled assembly code satisfies the translated assertions.
The function DeleteNode deletes a node from a binary search tree and reconnects
its left or right child.



Front. Comput. Sci. China (2007), Research Article 19

The parameter of the function is a pointer which points to a tree. We don’t
know the precise layout of pointers in the tree, but we do know that the tree
satisfies the following definition. Suppose tree node is defined as

struct node
{int data; struct node *l; struct node *r; },

the definition of the tree is:

tree(p) , {p}N ∨ ({p} ∧ tree(p->l) ∧ tree(p->r)),

where p is the root of the tree. This definition, as well as some properties derived
from it could be used in the proofs. Two of the properties are used in the following
example: one is that there is no dangling pointer in a tree, the other is that
effective pointers in a tree vary from one another.

Figure 5 shows the annotated source program of the example and the as-
sertions between statements. These assertions are generated according to the
pointer logic. For the conditional branch which states that neither the left nor
the right child of the parameter p is null (the function requires p not null), most
of the assertions are inserted between the statements; for other parts of the code,
only the assertions at some key points are inserted.

According to the rule for function call, the following formula holds.

{{{{q1} ∧ {q2}N ∧ tree(q1)}}}
q2 = DeleteNode(q1)
{{{({q1, q2} ∨ ({q2} ∧ {q1}D) ∨ {q1}D) ∧ tree(q2)}}}
And after the assignment q1=NULL, we derive a clearer postcondition: {{{{q1}N∧

tree(q2)}}}
We take the asserted program fragment

{{{{p,q} ∧ {p->r} ∧ {p->l,s} ∧ {s->r} ∧ . . . }}}
q = s; s = s->r;

{{{{p} ∧ {p->r} ∧ {p->l, q} ∧ {q->r, s} ∧ . . . }}}
as an example to explain how to translate assertions and how to prove that
a basic block satisfies its pre- and postconditions. (Note that these pre- and
postconditions are pointer-related assertions.) Its corresponding basic block at
assembly level and the pre- and postconditions corresponding are as follows:

{{{{ebp->8, ebp->-4} ∧ {ebp->8->8} ∧ {ebp->8->4, ebp->-8}∧
{ebp->-8->8} ∧ . . . }}}
movl -8(%ebp), %eax
movl %eax, -4(%ebp)
movl -8(%ebp), %eax (1)
movl 8(%eax), %eax
movl %eax, -8(%ebp)

{{{{ebp->8} ∧ {ebp->8->8} ∧ {ebp->8->4, ebp->-4}∧
{ebp->-4->8, ebp->-8, eax} ∧ . . . }}}



20 A pointer logic and certifying compiler

{{{{p} ∧ tree(p)}}}
struct node * DeleteNode(struct node *p)

{ struct node *q, *s;

{{{{p} ∧ {q, s, res}D ∧ tree(p)}}}
if(p->r==NULL) /* right child is null, reconnect left child */

{ q = p; s = p->l; free(q); return s; {{{{p}D ∧ tree(res)}}}}
else if(p->l==NULL)/* left child is null, reconnect right child */

{ q = p; s = p->r; free(q); return s; {{{{res} ∧ {p}D ∧ tree(res)}}}}
else /* neither the left nor the right child is null */

{ {{{{p} ∧ {p->l} ∧ {p->r} ∧ {q, s, res}D ∧ tree(p->l) ∧ tree(p->r)}}}
q = p; s = p->l;

if(s->r == NULL) /* reconnect *q’s left child */

{ q->l = s->l; p->data = s->data; free(s); return p;

{{{{p, res} ∧ tree(res)}}}}
else

{ {{{{p, q} ∧ {p->r} ∧ {p->l, s} ∧ {s->r} ∧ {res}D∧
tree(p->l->l) ∧ tree(p->l->r) ∧ tree(p->r)}}}

q = s; s = s->r;

{{{∃n : N.({p} ∧ {p->r} ∧ ∀i : 0..n− 1.{p->l(->r)i} ∧ {p->l(->r)n, q}∧
{p->l(->r)n+1, s} ∧ {res}D∧
∀i : 0..n.tree(p->l(->r)i->l) ∧ tree(p->l(->r)n+1) ∧ tree(p->r))}}}
/* — loop invariant */

while(s->r != NULL) /* turn left, and then go on to the end of the right side */

{ q = s; s = s->r;}
{{{∃n : N.({p} ∧ {p->r} ∧ ∀i : 0..n− 1.{p->l(->r)i} ∧ {p->l(->r)n, q}∧
{p->l(->r)n+1, s} ∧ {s->r}N ∧ {res}D∧
∀i : 0..n.tree(p->l(->r)i->l) ∧ tree(p->l(->r)n+1) ∧ tree(p->r))}}}

p->data = s->data;

q->r = s->l; /* reconnect *q’s right child */

{{{∃n : N.({p}∧{p->r}∧∀i : 0..n−1.{p->l(->r)i}∧{p->l(->r)n, q}∧{s}∧
(({s->l, q->r} ∧ {s->r}N ) ∨ {s->r, s->l, q->r}N ) ∧ {res}D∧
∀i : 0..n.tree(p->l(->r)i->l) ∧ tree(p->l(->r)n+1) ∧ tree(p->r))}}}

free(s);

{{{∃n : N.({p} ∧ {p->r} ∧ ∀i : 0..n− 1.{p->l(->r)i} ∧ {p->l(->r)n, q}∧
({q->r} ∨ {q->r}N ) ∧ {s, res}D∧
∀i : 0..n.tree(p->l(->r)i->l) ∧ tree(p->l(->r)n+1) ∧ tree(p->r))}}}

return p;

{{{{p, res} ∧ tree(res)}}}
}

}
}

Fig. 5. Example: deleting node from BST



Front. Comput. Sci. China (2007), Research Article 21

In these instructions, the addresses of p, q and s in the stack are represented
by 8(%ebp), -4(%ebp) and -8(%ebp) respectively; the offsets of the fields l and
r in structure tree are 4 and 8 respectively; ebp is the base pointer of current
stack frame.

Now, we explain how to obtain a proof-carrying basic block. The behavior of
the first instruction here is to assign an effective pointer to a null pointer. And
according to the corresponding inference rule of the pointer logic, we can get the
precondition of the next instruction:

{{{{ebp->8, ebp->-4} ∧ {ebp->8->8}∧
{ebp->8->4, ebp->-8, eax} ∧ {ebp->-8->8} ∧ . . . }}} (2)

The rest instructions are all assignments between effective pointers. (RULE 14)
presented in section 3 can be applied to all these instructions except the third
one which is an assignment between equal pointers. The preconditions of the
third, fourth and fifth instructions are:

{{{{ebp->8} ∧ {ebp->8->8} ∧ {ebp->-8->8}∧
{ebp->8->4, ebp->-8, ebp->-4, eax} ∧ . . . }}} (3)
{{{{ebp->8} ∧ {ebp->8->8} ∧ {ebp->-8->8}∧
{ebp->8->4, ebp->-8, ebp->-4, eax} ∧ . . . }}} (4)
{{{{ebp->8} ∧ {ebp->8->8} ∧ {ebp->-8->8, eax}∧
{ebp->8->4, ebp->-8, ebp->-4} ∧ . . . }}} (5)

The postcondition of the fifth instruction is also the postcondition of the basic
block. The asserted basic block (1), concatenated with the assertion sequence
(2)-(5) and the rules to derive these assertions, forms a proof of (1).

Note that all the assertions at assembly level are parameterized by a machine
state except Π, N and D, because Π, N and D are concentrated on the equality
of pointers rather than the values of them. Moreover, the change of Π, N and
D caused by the change of a state has already been embodied in the inference
rules of the pointer logic.

6 Experimental results

The certifying compiler is still under active development and we continue to
extend the range of programs being compiled and certified. In this section we
present some early experimental results with the intension to shed some light
on the questions such as how large the safety proofs are, what percentage of the
safety proofs can be derived automatically and how expensive proof checking
compared to certifying compilation.

We show in Table 1, for a few of our internal test cases the proof sizes com-
pared with the code sizes, the automatically generated proof sizes compared with
total proof sizes (including those written manually) and the compilation times
(including VC and proof generating times) compared with the proof checking



22 A pointer logic and certifying compiler

times. This data shows that the sizes of proofs for these programs are rather
large compared with the programs themselves, but over 70% proofs can be gen-
erated automatically and the proof checking time is negligible compared with
the compilation time. All measurements were performed on a machine using an
Intel Celeron CPU running at 2GHz with 1G memory.

Test case reversal insert clearList creatList preorder

Code size (byte) 734 653 518 504 431

Total proof size (kb) 37.1 41.4 28.4 39.3 28.2

Auto-generated

proof size (kb)
(% of total proof size)

26.4

(71%)

34.3

(83%)

21.5

(76%)

27.5

(70%)

22.1

(78%)

Compilation time (ms) 1186 7402 194 10710 1870

Checking time (ms) 20 22 14 21 13

Table 1. The experimental results for a few of our internal compiler test cases.

7 Related work

An important characteristic of Hoare logic is its use of variable substitution
to capture the semantics of assignments. The extension to Hoare logic in this
paper is essentially a kind of pointer-analysis tool which captures the influences
of pointer operations using addition, deletion and substitution of access paths.
Pointer analysis has been studied for over 20 years, and in history it mainly
tried to answer the question: what is the possible set of objects pointed to by
a pointer at runtime? Like other static techniques, pointer analysis is bothered
with undecidability, so for most languages, the solution is always approximative.

Different applications of pointer analyses demand different precisions and ef-
ficiencies. And precisions and efficiencies can be achieved by different algorithms
of analyses. For example, Bjarne Steensgaard presented a flow-insensitive, inter-
procedural, context-insensitive points-to analysis for a small imperative pointer
language which captured the important properties of languages like C [12]. The
algorithm is based on a non-standard type system and uses type inference to per-
form points-to analysis. Marc Berndl et al. used Binary Decision Diagrams to
solve a flow-insensitive, context-insensitive points-to analysis, which solved the
efficiency problems [13]. Michael Hind summarized the related work on pointer
analysis and outlined some problems that remained open [14].

To meet the safety requirements of software, we have restricted some unde-
cidable pointer operations in PointerC, and thus obtained an accurate pointer
analysis instead of an approximate one. These restrictions do not influence the



Front. Comput. Sci. China (2007), Research Article 23

language functionality of PointerC. And they make it possible for us to express
the collection of pointer information in the pointer logic rules.

As for proving program properties, Bornat also used Hoare logic to reason
about properties of pointer programs [15]. Inspired by the work of Burstall [16],
he treated the heap as a pointer-indexed collection of objects, each of which was a
name-indexed collection of components. Then he extended the assignment axiom
of Hoare logic to accommodate the assignment of object components and used
it to prove some properties of pointer programs. Mehta and Nipkow adopted a
similar approach when reasoning about pointer programs in a higher-order logic
system Issabellet/HOL [17]. And so did Marché et al. in their prototype tool
Caduceus [18].

The common feature in the approaches of Bornat’s and ours is to extend
the assignment axiom of Hoare logic based on the judgement of pointer aliasing
through the equivalence of pointer indexes. But Bornat’s approach can only be
used in the languages without explicit deallocation (the memory managements
of these languages usually depend on garbage collection). Our approach can be
used to support deallocation, but this also increases the complexity of the pointer
logic. For example, considering free(p), to avoid dangling pointer dereferences,
we need to guarantee that there is no access to the freed object through p or any
other pointers which equal p; when assigning something to an effective pointer
p, to avoid memory leaks, we need to make sure that at least one other pointer
equals p.

In the research field of certified compiler, Moore was one of the first to me-
chanically verify semantic preservation for a compiler [19], although for a cus-
tom language and a custom processor that were not commonly used. After that,
more compilers were verified, including a compiler for a subset of Common Lisp,
a byte-code compiler for a subset of Java, and a compiler for a tiny subset of C.
The most recent typical work is the certification of a lightly-optimizing back end
that generates PowerPC assembly code from a simple imperative intermediate
language called Cminor [20] by Leroy. A front end translating a subset of C
to Cminor is under development and certification. One of the novel features of
Leroy’s work is to emphasize the certification of a complete compilation chain
instead of parts of a compiler. Another novelty is that most of the compiler is
written directly in the Coq specification language, in a purely functional style.

Generally, it is much easier to prove the correctness of a calculation result
than to prove the correctness of the calculation itself. Therefore, certifying com-
piler has more possibility to be used in practice first than certified compiler.
Necula’s Touchstone [8] is composed of a traditional optimizing compiler and
a certifier which automatically produces a proof for each assembly program. A
proof checker can be used to automatically check the generated proofs. Since the
source programs compiled by Touchstone are written in a very small safe subset
of C, their type safety and memory safety are easy to be checked. The major
advance of Special J [9] over Touchstone is the scope of the source language
compiled, which in turn necessitates the handling of non-trivial run-time mech-
anisms such as object representation, dynamic method dispatch and exception



24 A pointer logic and certifying compiler

handling. Moreover, Special J is freely able to apply many standard local and
global optimizations.

Our design has the following significant differences from Touchstone and
Special J:

1. PointerC has more pointer types and operations, and also provides dynamic
storage allocation and deallocation. These features make it suitable for writ-
ing system-level programs.

2. We use some new techniques to handle the features of the language equipped
with both a type system and a logic system. For example, Our VC generator
can perform both forward and backward VC generations.

3. Due to the simplicity of the source language, loop invariants which only
concern types can be generated automatically in Touchstone and Special J.
In our certifying compiler, loop invariants may contain more information
than types, and it should be provided by programmers.

8 Conclusion

In order to take the technology of certifying compiler and PCC into a more
realistic programming language, we have designed a pointer logic system for
PointerC and a reasoning framework for Intel x86 assembly code, and we have
also designed a certifying compiler for PointerC and implemented its prototype.
This prototype is now able to generated proof-carrying code for some functions
about singly-linked list or binary search tree. Such proof-carrying code can be
automatically checked by a proof checker in our prototype.

In future work, we plan to relax the restrictions on pointer arithmetic op-
erations and allow calloc which is ubiquitous in C programs. Although we have
proved the soundness of the assembly-level reasoning system, it is still necessary
to prove the safety of PointerC and the soundness of the source-level pointer logic
system. Moreover, a deeper comparison between separation logic and our pointer
logic will be discussed in future. Improving the modularity of program-property
reasoning by augmenting the language with object-oriented structures will also
be considered.

In the implemented prototype, integer-related VCs are proved using Coq by
programmers and pointer-related ones are proved by a simple theorem prover
which is embedded in the prototype. The compiler design, as well as the proof-
checking at assembly level, suffers from the inconsistency of the two kinds of VCs.
So we plan to use an embedded theorem prover for all VCs in the next version
of our certifying compiler. And this will make it easy to design and simplify the
syntax of the proof or proof hint. The influence of PCC and certifying compiler
on code optimization is the further future work to be considered.

Acknowledgments We thank Professor Zhong Shao in Yale University and
anonymous referees for suggestions and comments on an earlier version of this
paper. This research is based on work supported in part by grants from Intel



Front. Comput. Sci. China (2007), Research Article 25

China Research Center and National Natural Science Foundation of China under
Grant No.60673126. Any opinions, findings and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References

1. G. C. Necula. Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. New York: ACM
Press, 1997, 106–119.

2. J. G. Morrisett, D. Walker, K. Crary, et al. From system F to typed assembly
language. In: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. New York: ACM Press, 1998, 85–97.

3. Y. Mandelbaum, D. Walker, R. Harper. An effective theory of type refinements.
In: Proceedings of the 8th ACM SIGPLAN international conference on Functional
programming. New York: ACM Press, 2003, 213–225.

4. A. W. Appel. Foundational proof-carrying code. In: Proceedings of the 16th Annual
IEEE Symposium on Logic in computer science. Washington: IEEE Computer
Society, 2001, 247–258.

5. D. C. Yu, N. A. Hamid, Z. Shao. Building certified libraries for pcc: dynamic
storage allocation. Science of Computer Programming, 2004, 50(1-3): 101–127.

6. X. Y. Feng, Z. Shao, A. Vaynberg, et al. Modular verification of assembly code
with stack-based control abstractions. In: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation. New York: ACM
Press, 2006, 401–414.

7. H. W. Xi. Applied type system (extended abstract). In: post-workshop Proceedings
of TYPES 2003. Lecture Notes in Computer Science, Vol 3085. Berlin: Springer-
Verlag, 2004, 394–408.

8. G. C. Necula, P. Lee. The design and implementation of a certifying compiler.
In: Proceedings of the 1998 ACM SIGPLAN Conference on Prgramming language
design and implementation. New York: ACM Press, 1998, 333–344.

9. C. Colby, P. Lee, G. C. Necula, et al. A certifying compiler for Java. ACM SIG-
PLAN Notices, 2000, 35(5): 95–107.

10. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in computer science.
Washington: IEEE Computer Society, 2002, 55–74.

11. E. W. Dijkstra. A discipline of programming. Englewood Cliffs, New Jersey:
Prentice-Hall, 1976.

12. B. Steensgaard. Points-to analysis in almost linear time. In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
New York: ACM Press, 1996, 32–41.

13. M. Berndl, O. Lhoták, Qian F., et al. Points-to analysis using BDDs. In: Proceed-
ings of the 2003 ACM SIGPLAN Conference on Programming language design and
implementation. New York: ACM Press, 2003, 103–114.

14. M. Hind. Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering. New York: ACM Press, 2001, 54–61.

15. R. Bornat. Proving pointer programs in Hoare logic. In: Proceedings of the
5th International Conference on Mathematics of program construction. London:
Springer-Verlag, 2000, 102–126.



26 A pointer logic and certifying compiler

16. R.M. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, New York: American Elsevier, 1972, 7:23–50.

17. F. Mehta, T. Nipkow. Proving pointer programs in higher-order logic. Information
and Computation, 2005, 199(1-2):200–227.

18. J. C. Filliâtre, C. Marché. Multi-Prover Verification of C Programs. In: Proceed-
ings of the 6th International conference on formal engineering methods. Seattle:
Springer-Verlag, 2004, 15–29.

19. J. S. Moore. Piton: a mechanically verified assembly-language. Norwell: Kluwer
Academic Publishers, 1996.

20. X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. New York: ACM Press, 2006,
42–54.


